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Undulated blistering during thin film delamination
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We study the delamination of a compressed thin film from a solid substrate with continuum elasticity theory.
Our model enables one to describe the advance of an undulated blister. It is shown that an elastic tension
between the inner fold and the boundary of a blister is at the origin of the undulations. In addition, the essential
experimental observations and recent simulations are reproduced very well:~i! Above a strain threshold,
straight blister growth is unstable and starts to undulate.~ii ! It is found that the period of the undulations scales
with e* 21/2, wheree* is the isotropic compressive strain of the film.~iii ! Similar periodic corrections to this
power law scaling are recovered and are found to be associated with a growth instability.

PACS number~s!: 68.55.2a, 46.32.1x, 47.54.1r
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Compressed thin films and coating can delaminate
buckle away from the substrate on which they are depos
to form blisters@1#. The compressive straine* , responsible
for this kind of damaging phenomenon, can have differ
origins @2#. It is generally due to the difference in therm
expansion between the layer and the substrate. In that c
the strain can reach the typical valuee* '0.01 with an asso-
ciated stresss* ' 1 GPa@3#. In many cases, the delaminate
part of the film adopts a sinusoidal shape behind a propa
ing tip. For 40 years, ‘‘telephone-cord’’ blisters have be
met in many different kinds of coated structures~for a re-
view, see@2#!. It has been experimentally established th
undulated blisters propagate in films under isotropic str
@4#. Very recently this was confirmed numerically by Cros
and Bradley@5#, who performed simulations on a lattic
model with microscopic debonding.

For large size blisters~in comparison to the film thicknes
h), the delaminated region, bounded by a wavy bounda
exhibits folding patterns@6#. An argument which is often
used@7#, but never really proven, is that during delaminatio
the boundary undulations accommodate folding thus crea
an ordered structure like a telephone-cord blister. In t
Rapid Communication, we show that the physical origin
this accommodation is the elastic tension~neglected so far
and considered here as a perturbation! between the fold and
the boundary of a blister. We use a model of continu
elasticity that gives a simple interpretation of the undu
tions: they help the tensile strain to relax. This is also coh
ent with the heuristic explanation given by Ref.@5#. A very
recent paper of Audoly@8# argues that, through a stabilit
analysis of a semi-infinite straight blister, an in-plane d
placement field has to be taken into account. However, sh
folding of the film is absent in Audoly’s considerations. Fu
thermore, an important aspect of our simpler model is
capability to describe the advance of an undulated blis
which is otherwise very difficult technically, by attemptin
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to solve the nonlinear Fo¨ppl and von Ka´rmán equations@8#.
Our model also recovers the experimental phenomenol
@2# as well as the simulations results obtained by Crosby
Bradley@5#: ~i! Straight shaped blisters are unstable when
isotropic compressive straine* is bigger than a threshold
ec* . ~ii ! It is found that the period of the oscillations scal
with e* 21/2. ~iii ! Similar periodic corrections to this powe
law scaling are recovered and are found to be associated
a growth instability.

We briefly recall the results of Ortiz and Gioia@2,7#,
which play a role of reference in this work. They show th
while neglecting the in-plane displacement field, the hei
of the delaminated filmz(r ) obeys the Eikonal equation
known in geometrical optics@9#, u¹zu5@2(11n)e* #1/2,
wheren is the Poisson’s ratio andr5(x,y) represents the
in-plane position. The delaminated film buckles away fro
the substrate with a constant slopek5@2(11n)e* #1/2. Con-
sidering thate* '0.01 andn'0.3, the slope is rather smal
k'0.16. z(r ) is calculated via the Nadai’s sand heap co
struction@10# which minimizes the bending energy~i.e., the
number of folds!:

z~r !5kd~r !, ~1!

whered(r ) is the smallest distance from the pointr , within
the delaminated region, to the given boundary. The result
the observations remarkably well@2,7#.

Consider the blister drawn in Fig. 1. The boundary
formed by a straight part of lengthL with a semicircular end
of radiusr. By using Eq.~1!, the delaminated region is en
tirely described byz(r ): a straight fold is obtained along th
x axis. The in-plane displacement fieldu(r ) is totally ne-
glected. With the latter assumption, this construction has
remarkable property of relaxing the blister elastic ene
density~energy per surface unit! by reducing it to a constan
Wb5 1

2 Ehe* 2 @7#, E being the Young’s modulus. The com
pressed laminated film has an energy densityWf
5Ehe* 2/(12n). Thus, the energy released by delaminati
is

Edelam5S~Wb2Wf1Gc!1~ l B12l F!T0, ~2!
R1501 ©2000 The American Physical Society
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whereS is the surface of the blister, andl B andl F represent
the length of the boundary and of the fold respectively.Gc is
the fracture release energy due to delamination@7#. A pure
mode I delamination~opening! is considered, and mode mix
ity is discarded@3,5,7#. T0 and 2T0 are the respective bound
ary and fold line energy. Forr/h@1, we have@2,7#

T05
Eh2

2~12n2!
@ 2

3 ~11n!e* #3/2. ~3!

The growth is considered here as a purely dissipative p
nomena. Thus, a straight growth along thex axis is allowed
whendEdelam/dL,0, i.e., whenr.rc , for our seed blister
we get rc52T0 /(Wf2Wb2Gc). Note that rc.0 for Gc
,Wf2Wb .

By only considering the above energyEdelam, the blister
does not undulate during its growth because of the cos
line energy. An additional energy of in-plane tensile stra
origin, Etens, must be added toEdelam in order for the blister
to grow with undulations~which help in-plain tensile strain
to relax!. This elastic tension is due to the vertical forc
~parallel to thez axis! P(r ) located on the foldF and on the
boundaryB, which tense the delaminated film. These forc
can be calculated by using the Euler equilibrium equati
for thin plates@11#,

DD2z2h]b~sab]az!5P~r !. ~4!

The other equilibrium equation]bsab50 is always fulfilled
thanks to Eq.~1!. a andb represent the in-plane coordinat
(x,y), ]a5]/]a. D is the bending stiffness, D
5Eh3/@12(12n2)#. The membrane stress is given by@7#

FIG. 1. Seed blister.~a! above view,~b! side view, and~c! front
view. The bold line represents the fold obtained by Eq.~1!. The
slopek of the delaminated film and the ratioh/r are exaggerated fo
clarity.
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sab5
Eh

~12n2!
@~12n!eab1neggdab#, ~5!

whereeab5 1
2 ]az]bz2e* dab is the membrane strain. Not

that here,sab only depends on the displacement along thz
axis z(r ). sab should also depend on the in-plane displac
ment ua(r ); the latter dependence is neglected so far, c
sistent with Ref.@7#. Thanks to this approximation,P(r ) is
the force per surface unit created by the only out-of-pla
displacementz(r ) constructed with Eq.~1!. P(r )50 every-
where exept on the fold and on the boundary, where
Eikonal equation is not satisfied. In order to have a differe
tiable field z(r ), it is assumed@2# that nearF or B, z
5 1

2 kh21c for h,h, whereh is the local normal coordinate
to B or F, c is a constant insuringz(h) continuity. As a
consequence, the forces are mainly located within a dista
h alongB andF.

The (x,y) plane is meshed on a 1503150 square lattice
with a typical mesh sizedl 5h. We start with a seed bliste
~Fig. 1! with r51.1rc and L55dl . Below, we useF(r )
5P(r )(dl )2, which is the force applied to the surface (dl )2

of a mesh. Inside the blister boundary, the heightz(xi ,yi) of
the mesh (xi ,yi) is obtained via Eq.~1!. This value is in-
jected in the discrete forms of Eqs.~4! and ~5! to calculate
the applied forceF(xi ,yi). Along the fold a double set o
forcesFF is obtained on each side of the fold. Each up-for
FF is counterbalanced by a down-forceFB at the boundary,
FF52FB @Fig. 1~c!#, resulting in a mechanical equilibrium
The up-forcesfT , located on a semicircle of radiush around
the tip of the fold, compensate the set of down-forcesFB
located at the circular end of radiusr of the boundary, hence
u f T /FBu5u f T /FFu'r/h. As we consider thin layer (r/h
@1), we assume that the main force applied on the fold
the one located at its tipFT5(fT @12#.

As mentioned above, in-plane displacement fieldua has
been neglected so far. Now,ua is free to relax under the
action ofF(r ), resulting in a tensile strain between the fo
and the boundary. Consider the lineD joining the tipT and a
point B located at the boundary@Figs. 1~a! and 1~b!#, the
distance betweenB and T is r. In our modelz(r ) creates
F(r ) via Eq.~4!, hencez cannot in turn be affected byF. As
z is frozen, onlyua can be affected by the in-plane comp
nentFi (F projected ontoD). The displacement field create
in a very thin layer by an in-plane forceFi at a distancer is
known @13#,

u5
~11n!2

2pEh S n23

11n
Fi ln~r /h!1

r ~r•Fi!

r 2 D . ~6!

The two opposite in-plane forcesFBi and FTi applied inB
andT tense the blister film, and the associated tensile ene
@13# between the tip and a portiondl of the boundary is

Etensdl 52 1
2 @FTi•~uT

T1uT
B!1FBi•~uB

B1uB
T!#. ~7!

The subscript ofu refers to the point whereu is estimated,
and the superscript denotes which force createsu. Etensdl
can be divided into two components: a self-energyEsel fdl

52 1
2 (FTi•uT

T1FBi•uB
B) as if the two forces were alone, an

an interaction energyEintdl 52 1
2 (FTi•uT

B1FBi•uB
T). Esel f
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is a constant which shiftsEtens, resulting in an additiona
line tension. In order to avoid divergence,uT

T and uB
B are

arbitrarily estimated atr 5h. Actually, this cutoff is not very
important, it has been found that the typical wavelength
the undulations is not affected whileEsel f!T0. By integrat-
ing along the boundary, we obtain the tensile energy betw
the fold-tip and the whole boundary,

Etens5E
l B

dl Etens5E
l B

dl ~Eint1Esel f!. ~8!

Thus, the total elastic energyEel released by blistering is
Eel5Edelam1Etens, where the new termEtens represents the
driving force of the telephone-cord tailoring.

Let us now sketch our numerical procedure. The tip of
fold, located in the mesh (xt ,yt) at stept, visits the four
meshes (xt6dl ,yt6dl ) at stept11, leading to at most
four different possible longer foldsFn . Note that any fold
overlap is forbidden, hencen<4. For each possible fold, w
reconstruct the blister around it by inverting Eq.~1! @14#. We
calculate the energyEel

(n)(t11) associated with thenth pos-
sible fold. The selected fold is the one for whichEel

(n)(t
11) is minimum. We continue the same procedure at s
t12 and so on. If for a given stept, Eel

(n)(t11).Eel
(n)(t) the

blister growth is stopped. At each stept, the discrete force
field F(xi ,yi) is calculated as mentioned above and the m
chanical equilibrium state is reached. Experimentally, t
equilibrium is achieved through elastic relaxation, on a ti
scale associated with that of the sound speed (;1 ms!, much
smaller than the time associated with the blister propaga
@;hour(s)# @2#. It allows us to consider that the blister is,
each step of its growth, in a mechanical equilibrium. Th
each force is projected as schematically illustrated in Fig
Eel(t)5Edelam(t)1Etens(t) is straightforwardly calculated
via Eq. ~2! for Edelam and Eqs.~6!–~8! for Etens.

It is found that above a strain thresholdec* , a straight
shape is no longer stable and the blister begins to undu

FIG. 2. A blister is represented at three different stages of
growth, the strain ise* 50.0085. On the gray scale, the sharp fo
~the highest values ofz) is represented with white color. The lam
nated part of the film is black colored. The selected directions
growth are selected by the square meshing.
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~Fig. 2! with a regular wavelength. It comes out from o
simulations thatec* '0.006 for the chosen parameters:E
51011J/m3; n50.3; Gc50.1 J/m2 @15# and h51 mm. Fig-
ure 3 shows how energy variation is affected during the b
ter growth. At each change of direction a cusp is obtainedl
is the length between two consecutive cusps. Each cusp
responds to a sudden increase and decrease of the varia
of Edelam andEtens respectively: tension is partially relaxe
by direction changes. If the variation ofEtens is bigger than
the variation ofEdelam ~i.e., if e* .ec* ), it leads to a lower-
ing of the total energyEel , contributing to the creation o
undulations.

l is plotted in Fig. 4 in function ofe* 2ec* for e* .ec* .
A scaling power law with a2 1

2 exponent is recovered~Fig.
4!. This result is compatible with Refs.@2# and @5#. In addi-
tion, obvious periodic corrections to the power law are o
served consistently with Ref.@5#. A careful inspection of the
tip of the fold shows that at each direction change its pro
gation becomes unstable: the tip hesitates between two d
tions leading to a narrow zigzagging (;1 mesh thick! of the

s

f

FIG. 3. Energy variation during the growth. Dotted line,Etens;
dashed line,Edelam; solid line, Eel . Arrows indicate changes o
direction. The strain ise* 50.0085.

FIG. 4. Strain dependence ofl ~solid line! andl̃ ~dashed line!.

The straight line indicates;2
1
2 slope.ec* '0.006.l and l̃ are in

mm, and they are averaged on ten periods of blister undulation
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fold. The zigzag is not visible on Fig. 2, because it is av
aged by the blister reconstruction@14#; that is why it has also
no effect on energy curves~Fig. 3!. This instability occurs on
a lengthL of the order of a few meshes. It has been check
by refining the meshing, thatL is not due to a numerica
instability. It is found thatL depends one* 2ec* . In Fig. 4,

it is clear thatl̃5l2L obeys a power law with a2 1
2 ex-

ponent without oscillation. It means that oscillations are d
to the termL, i.e., to the growth instability. However, th
origin of this instability remains an open question; it cou
be related to the one observed in Ref.@8#.

In this paper we have demonstrated that the tensile st
between the tip of the fold and the boundary of a blister
the driving force of the undulated delamination growth. T
t-

s

-

d,

e
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results are coherent with experimental and numerical p
lished works. Our model gives a deeper insight into perio
corrections: in the delamination case it appears that they
associated with a growth instability. However, a more s
cific study should be carried out to give a general expla
tion for all fracture problems@5,16#, where these periodic
corrections occur. We also believe that the calculations p
sented here could be extended to bifurcation growth
therefore to blisters with several folds.
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